Dr. Kirk Schultz

My work has evaluated clinically driven issues related to hematopoietic cell transplantation. Clinical investigations have focused on age-related factors affecting graph-versus-host disease (GVHD), graft-failure and graft-versus-leukemia (GVL). Laboratory investigations have used pre-clinical models and the performance of correlative studies in humans to investigate the mechanisms of GVHD and GVL and to develop experimental approaches to modulate these phenomena.

Our laboratory has evaluated the hypothesis that manipulation of MHC class II antigen presentation can alter T cell responses to endogenous antigens. We have investigated the importance of two MHC class II antigen presenting cells in vivo, B cells and dendritic cells, for T cell priming responses to leukemia, and minor histocompatibility antigens (MiHC). We have also investigated whether inhibition of MHC class II antigen presentation by lysosomotropic agents such as chloroquine can inhibit T cell responses to MiHC and development of GVHD. We have translated these pre-clinical observations into clinical studies. We have been one of the first groups to identify chronic GVHD biomarkers in children.

Lab website: https://bcchr.ca/our-research/researchers/results/Details/kirk-schultz

Email: kschultz@mail.ubc.ca

Dr. Christian Steidl

Dr Steidl is an Associate Professor in the Department of Pathology (University of British Columbia) and Lymphoid Cancer Research (BC Cancer Agency). He is holding an MD degree from the University of Muenster, Germany, and a PhD equivalent degree from University of Witten-Herdecke, Germany. Dr Steidl has expertise in clinical malignant hematology, cytogenetics, molecular genetics, next-generation sequencing and functional genomics. Dr. Steidl joined the Centre for Lymphoid Cancer at the British Columbia Cancer Agency in 2006. He is currently supervising a translational research laboratory focusing on the pathogenesis of B cell lymphomas. Dr Steidl is most known for his work on biomarkers in Hodgkin lymphoma and discovery of novel gene fusions in B cell lymphomas. He has authored 74 refereed articles in the field of hematological malignanices and has been an invited speaker at many conferences. He also serves as a member of the Lymphoma Research Foundation’s Panel of Scientific Advisors and the Medical Expert Committee of the Cancer Research Society. Dr Steidl holds research funding as the principle investigator by the Canadian Institutes of Health Research (CIHR), the Leukemia and Lymphoma Society of Canada (LLSC), the Canadian Hematology Society (CHS), and is co-investigator on a Genome Canada grant to advance personalized treatments of lymphoid cancer patients. Dr. Steidl also holds a career investigator award by the Michael-Smith Foundation for Health Research and a New Investigator Award by the CIHR.

Lab website: https://www.bccrc.ca/dept/lcr/people/christian-steidl

Email: CSteidl@bccancer.bc.ca

Dr. Fumio Takei

Natural killer (NK) cells have two major functions, namely killing of tumor cells and production of cytokines, in particular interferon-g. These functions of NK cells are triggered by cell surface receptors that recognize ligands on tumor cells or cytokines. NK cells also express inhibitory receptors that recognize MHC class I on normal cells. A balance between stimulatory and inhibitory receptors mediates anti-tumor NK cell functions and tolerance to normal cells. In our laboratory, we are studying how NK cells acquire those stimulatory and inhibitory receptors as well as their functions during their development and how the process of tumor cell killing is regulated. These studies will likely lead to new ways to enhance anti-tumor functions of NK cells without affecting self-tolerance.

Lab website: http://www.terryfoxlab.ca/people-detail/fumio-takei/

Email:   ftakei@bccrc.ca 

Dr. Yuzhuo Wang

Dr. Wang’s academic contributions can be highlighted by a number of novel hypotheses he has proposed, such as hypotheses on “prostate stem cells”, “epithelial-immune cell transition (EIT)”, “cancer-generated lactic acid is critical, immunosuppressive metabolite rather than a ‘waste product’ (which has been believed for more than 90 years)” and “tumour dormancy is a non-genetic disease”. Dr. Wang is recognized for his pioneering work in the field of prostate cancer modeling. He was the first to establish tissue recombination model of hormonal prostatic carcinogenesis. He also developed the first model of hormonal carcinogenesis in human prostatic epithelium. Moreover, he is responsible for a novel method for establishing transplantable, patient-derived xenograft models that closely resemble patients’ malignancies. Using the methodology, his group has developed over 200 transplantable patient-derived xenograft models in the laboratory. Importantly such “next generation” xenograft models have been effectively applied in a number of research areas, such as (i) preclinical drug efficacy studies in anti-cancer therapeutics development, (ii) discovery and validation of potential biomarkers and/or therapeutic targets, and (iii) personalized cancer therapy

Lab website: http://www.prostatecentre.com/about-us/people/dr-yuzhuo-wang

Email: ywang@bccrc.ca

Dr. Stephen Yip

Stephen completed his combined M.D-Ph.D. training followed by 4 years of neurosurgical training at UBC. He switched to neuropathology and obtained his Royal College certification in 2007. He completed fellowship training in molecular neuro-oncology at the Massachusetts General Hospital under the mentorship of Dr David Louis (RC Clinician Investigator Program) and molecular genetic pathology at MGH/Harvard Medical School under the supervision of Dr John Iafrate. He currently practices neuropathology at Vancouver General Hospital and is the director of the Cancer Genetics & Genomics Laboratory at BC Cancer. His research interests include dissecting the molecular pathology of brain and spine cancers, practical deployment of advanced diagnostic assays, and the application of deep learning as an integrative diagnostic tool.

 

Relevant papers

Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis. Trends in Cancer. Doi: 10.1016/j.trecan.2019.02.002. 2019.

 

Wong D, Lounsbury K, Lum A, Song J, Chan S, LeBlanc V, et al. Transcriptomic analysis of CIC and ATXN1L reveal a functional relationship exploited by cancer. Oncogene. 2018.

 

Wong D, Yip S. Machine learning classifies cancer. Nature. 2018;555(7697):446-7.

 

Tarpey PS, Behjati S, Young MD, Martincorena I, Alexandrov LB, Farndon SJ, et al. The driver landscape of sporadic chordoma. Nat Commun. 2017;8(1):890.

 

Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226(1):7-16.

Lab website: https://pathology.ubc.ca/faculty/stephen-yip/

Email: stephen.yip@ubc.ca

Please reload

Prev Page

Interdisciplinary Oncology Program

Faculty of Medicine

100-570 West 7th Avenue
Vancouver, British Columbia V5Z 4S6

© 2017 by Kent Chen, Louis-Alexandre Fournier, Ada Leung and Michelle Pewarchuk . Proudly created with Wix.com